Subscribe to our blog
Posted 1 March 2018 by
Valérie Vandenbroucke
VP for Axon Technology

How AI Algorithms speed up Axon: 3 quick insights

Axon is a supply chain 4.0 solution that we develop in collaboration with our AI partner Genzai. During our Axon event in December, our customers Bridgestone, Tereos and Alpro shared insights they gleaned through Axon. I believe the next question is: How can we find out more quickly what input parameters matter most to get the best EBITDA results? This is how we tame the AI beast.

3 quick insights

  • Acceleration: AI algorithms can accelerate (from weeks down to hours) labor-intensive scenario analyses.
  • A critical human mindset: The measured accuracy of an algorithm can be used to determine if you have sufficient data to apply your knowledge or if you need to continue digging deeper before deriving conclusions.
  • Cascade: The cascaded approach, where man and machine take alternating turns, leads to faster results that are also recognized and trusted by our engineers. The AI algorithms have assisted the Bluecrux engineers in achieving more accurate and faster manufacturing and distribution footprint results for their customers.

What input parameters matter most?

Supply chains use more than 1,000 supply chain nodes with different input parameters and produce more than 5,000 output parameters with EBITDA as a key output to analyze each scenario.

To investigate AI algorithms’ potential to accelerate the scenario analysis phase, Bluecrux asked Genzai to apply artificial intelligence solutions. With these scenarios, the main objective was to find out more quickly what input parameters matter most to get the best EBITDA results of the model.

Step 1: Five regression models

How do the underlying data structures work? And how is the data for machine learning and regression modeling prepared? In Microsoft Azure Machine Learning, we tested five different regression models:

  • Linear
  • Bayesian
  • Neural Network
  • Decision Forest
  • Boosted Decision Tree

Using 90 percent of the scenarios, we trained the five models to predict EBITDA and compared the accuracy of the predictions with the final 10% of scenarios. Next to predicting the EBITDA outcome, we focused on the reliability and accuracy of the prediction.

→ With 600 inputs and 2,000 scenarios, do we have sufficient data to achieve a high predictability of the outcome?

Boosted Decision Tree performs best

During the first iteration, the Boosted Decision Tree algorithm resulted in the best outcome, and we could determine the ranking of 600 inputs based on their influence.

Although the ranking of the top ten was immediately recognized as very relevant by the Bluecrux network optimizing engineers, the evaluated accuracy of the prediction was low: 0.43. We had too few scenarios, or too many inputs, to make reliable predictions. From their experience, Bluecrux engineers were missing some important inputs that the model did not detect.

Step 2: Cascaded approach

To improve reliability, we decided on a cascaded approach. The 100 highest-ranking inputs of the first iteration were used to create an additional 2,000 scenarios, with the idea of increasing the number of scenarios and reducing the number of inputs to be investigated. The second iteration showed scenarios with less spread, indicating a denser set of inputs. The additional scenarios were fed into the trained Boosted Decision Tree algorithm.

→ The final accuracy of the EBITDA prediction improved to 0.84, where the model created a new ranking of the most important inputs. The final 20 best inputs are now used by Bluecrux engineers to complete the optimization of the supply chain network for its customer.

Want to learn more about our digital twin Axon and it’s capabilities? Reach out to our experts!

Read on below to discover more about Axon’s features: